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A B STRACT: We review spatially-weighted optical fiber sensors that filter specific vibration
modes from one dimensional beams placed in clamped-free and clamped-clamped
configurations. The sensitivity of the sensor is varied along the length of the fiber by
tapering circular-core dual-mode optical fibers. Selective vibration mode suppression on the
order of 10 dB has been obtained. We describe experimental results and propose future
extensions to single mode sensor applications.

1. INTRODUCTION: Fiber optic sensors have been developed to respond to a wide variety
of physical measurands and, during the past decade, have emerged as viable alternatives to
conventional electrical sensing techniques (Dakin and Culshaw 1988, Udd 1991). Specifically,
two-mode elliptical-core (e-core) fibers have been applied as structural vibration sensors when
operated in the linear region (Murphy etal 1990). Although less sensitive than their single-mode
counterparts, two-mode fiber sensors present design simplicity and operational robustness for
stable performance over long periods of time. In a recent paper, we enhanced e-core sensor
performance by including passive optical signal processing through selective sensor placement
and proposed the feasibility of applying weighting functions to the sensor to alter its longitudinal
sen sitivity (Vengsarkar 1991 ).

The development of piezoelectric spatially weighted sensors has led to research on the advantages
of modal sensors and actuators. Modal sensors, which sense the modal coordinate of a particular
vibration mode of a structure, can be operated within a control system without extensive
computation requirements. In their first description of modal sensors, Lee and Moon (1990)
made sensing elements out of polyvinylidene fluoride (PVDF) films shaped in the form of
specific modal shapes of a structure.

2. TttEORY - REVIEW OF BEAM MECHANICS: The Euler equation for transverse vibration
of isotropic beams is given by

4 _2
EI- y(x,t) + Pt --y(x,t) = 0 (1)

_x 4 _)t2 '

where E is Young's Modulus, I(x) is the Moment of Inertia, Pt is the linear density and y(x,t) is

the transverse displacement of the beam. Using the method of separation of variables, we find a
solution of the form

oo

y(x,t) = E Wn(X)rln (t), (2)
n=l

where Vn(X) represent the modal shapes and _qn(t) represent the associated time varying modal

amplitudes of the beam. Substituting Eq. (2) into Eq. (1) allows independent solutions lbr the
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functions _n(X) and "qn(t). The equation for _n(x) has a closed form solution determined by the

botmdary conditions of the beam (Murphy et al 1990). This set of resulting eigenfunctions is
also orthogonal, i.e.,

0L _m(X) _n(X) dx = 8mn , (4)

where _mn is the Kronecker delta and L is the length of the beam. This property is critical to the

design of the fiber-based modal sensors.

TAPERED, CIRCULAR-CORE DUAL-MODE FIBER SENSORS: The dual-mode fiber sensor

operates on the principle of differential phase-modulation between the LP01 and LP 11even modes

and consists of three different fiber sections fusion spliced to each other (Kim etal 1987). An e-
core single-mode fiber is used as the lead-in fiber, a two-mode e-core fiber comprises the sensing
section and a circular core multimode fiber acts as the lead-out fiber. At the second fusion splice,
the axes of the sensing fiber and the circular core muhimode fiber are offset from each other. This

allows the lead-out fiber to pick up only one of the lobes of the spatial interference pattern

resulting from the interaction between the LP01 and LP 11even modes in the sensing fiber. The

fused lead-out fiber thus acts as a ruggedized, low-profile spatial filter.

In this section we will restrict our analysis to the nature of the output signals and their

dependence on the differential propagation constant, A]3 (AI3 = 1301 - _11)" Although the

degeneracy of LP 1i even and LP 11_d modes in circular-core fibers makes the operation of such a

sensor difficult in practice, practical constraints have limited our experimental results to circular-
core fiber sensors. As a result, our analysis in this section will pertain to circular-core fiber
theory.

The output signal of a two-mode fiber sensor is sinusoidal and can be expressed

I(t) =I 0+ Iac cos[_(t)], (4)

where q_is the phase difference between the LP01 and the LP 11even modes and can be written as

(t) = AI3(x) E(x,t) dx, (5)

where e is the strain experienced by the fiber, A[3 is the difference in the propagation constants of

the LP0t and the LP t 1even modes, x denotes the longitudinal direction along the fiber axis, and a

and b denote the end-points of the two-mode sensing region of the fiber.

SYSTEM ANALYSIS: In order to evaluate the vibration modes of the beam, we express strain as

e(x,t) - 2y (x,t)
ax 2 , (6)

where y(x,t) denotes the deflection of the beam away from its equilibrium point. It is possible to
weight the information actually present in the structure by using a priori knowledge of the mode
shapes of the structure. Substituting Eq. (6) into (5) and integrating by parts leads to the
equation



where

¢(t) = tin(t) (Q(a,b) + l_ A_" (x) vdn(x) dx )
(7a)

Q(a,b) = [Al](x)_t' n (X)]ab- [A_' (x) Vn(X)] ba (7b)

and the primes indicate spatial derivatives with respect to x. Comparing Eqs. (7a) and (4) leads

one to choose a possible weighting function given by k[_"(x) = _m(x). : The functional

dependence of AI3" on V, the normalized frequency, is given below in Fig. 1 where V is defined
as

v = 2_g_p 4gn - = v(p), (g)
X.

and p is the core radius. Because we are varying the value of p as a function of x, by

construction, A_" becomes a function of x. Except for the contribution of Q(a,b), _(t) would
filter out all but the mth mode for a fiber sensor spanning the entire length of the beam.
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Figure 1: A 13"(x) over the full range of dual-mode operation.

From the Fig. 1 and Eq. 8, it is clear that one can form a spatially varying value of A_" by

choosing appropriate values for p. Notice that the function has useful behavior near the lower V

numbers and quite flat behavior elsewhere. We have provided two specific examples. For a

fiber with a linear taper (p(x) is a linear function), Al]"(x) is plotted in Fig. 2a superimposed
with the first mode shape of a clamped-free beam. A similar plot for a fiber with an exponential
profile superimposed with the first mode shape of a clamped-clamped beam is shown in Fig. 2b.
By applying the orthogonality property of the structural modes along with Eq. (7), we are be able
to tailor fiber profiles that will lead to vibration mode-selective sensor behaviors.

3. EXPERIMENTS: To test the validity of shaping A[3", we constructed a weighted sensor.

The sensor had an insensitive, lead-in, single-mode e-core fiber and an offset-spliced, lead-out



Juultimode fibcr that woukl spatially filter tile contribution from only one of tile two lobes at tile

output of the sensing region. A weighted fiber sensor with a taper that matches the A[Y'(x)

lutlclion to tile first mode of tile clamped-free beam (Fig. la) was fabricated. The sensing fiber
was pulled on a draw lower by varying the p,eform-feed and fiber-pull speeds as well as
contxolling the tmnpcramre of the furnace while the fiber was being drawn. The tapers could also
be made on a coupler station used conventionally for fabricating fused-biconical-tapered
couplers. The weighted fiber was attached to a clamped-free beam with a piezoelectric patch
providing a benchmark. Resuhs obtained from the weighted fiber sensor are shown in Fig. 3.
The FFT's of the fiber sensor and the piezoelectric patch show that the second mode has been
suppressed by 7 dl?, and the third mode by 12 dB in comparison to the piezoelectric sensor
output.
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Figure 2: Examples of useful taper profiles (a) Linear and (b) Exponcntial.
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Fig. 3. Fast Fourier transform of output signals for clamped-free beam. (a) Conventional e-core

fiber sensor and piezoelectric sensor comparison.(b) Tapered fiber sensor and piezoclcctric
scns(,r comparison.



4. EXTENSION TO SINGLE MODE OPTICAL FIBER SENSORS: As mentioned in
the introduction, by choosing to investigate dual-mode optical fiber sensors, one gains
robustness at the expense of sensitivity. However, there is no reason to expect that the benefits
of weighted sensitivity cannot be applied to general single mode sensors. Analogous to dual-
mode sensors, single mode fiber sensors have an integral dependence that describes their phase

variation, namely,

Lu(t) = 13(x) _:(x,t) dx, (9)

where 13is the propagation constant associated with the optical fiber. Substituting Eq. (9) into (5)
and, again, integrating by parts leads to the equations

¢_(t) =qn(t) Q(a,b) + _ "(x) Nn(X) dx , (lOa)

where

Q(a,b) = [_(x)gt' n (x)] _- [[_' (x) Vn(X)] ba• (llb)

Therefore we are interested in the second spatial derivative of the modal propagation constant to
achieve the weighted sensitivity. Fig. 4 shows this functional dependence.
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13"(x) over the full range of single mode operation.

This relationship offers some irtteresting possibilities. In contrast to the dual-mode case, this
curve is much richer in behavior and hence allows easier visualization of the shapes one is trying
to uhimately match. Notice that a decreasing followed by an increasing linear taper will produce
a first mode shape of the clamped-clamped beana for values of V near 1.2. Referring back to the
previous section, a more complicated exponential taper was required to form a first mode shape
with clamped-clamped boundary conditions in the dual-mode scheme. Also notice that the larger
values of V seem to form a shape very close to that of the second mode with clamped-free
boundary conditions. The possibilities seem only limited by the imagination of the person



designingthetaper.

5. CONCLUSIONS: Theresultspresentedin this paperdemonstratethe useof spatially
distributedfiber optic sensorswith intrinsicweightingfunctionsfor selectivevibrationmodal
analysis.Modalsuppressionsof 7 and12dB wereobtainedfor thesecondandthird modesof
vibration,respectively,for aclamped-freebeam;in comparison,thePVDF-basedmodalsensors
dcvclopedby Lee and Moon (1990) have resulted in a 7.3 dB suppression of the second mode
for the fundamental mode sensor and in a 15.45 dB suppression of the fundamental vibration
mode for a sensor shaped to enhance the second mode sensitivity. For fiber optic sensors, a
precision-controlled fabrication station is required for the development of such weighting
functions and we are currently addressing manufacturing issues. Although only the first mode of
vibration was filtered with tapered two-mode fibers, the approach is equally suited for higher-
order modal sensing and control using exotic shapes for the fiber tapers. However, the dual-

mode configuration suffers from a rather bland shape of the A_" curve and hence complex
shapes may be difficult to produce effectivelyx. This is not the case for single mode optical fiber
sensors. Because the functional shape is quite rich, a wide range of complex shapes can be

produced from concatenating simple linear tapers.
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